Abstract
Dietary supplementation with yeast derivatives (YD) contributes to the health and physiology of sows and piglets, but few studies have focused on how it influences gut health and performance of sows and piglets. The goal was therefore to examine whether YD, based on brewer’s yeast hydrolysate added to pregnancy diet, would affect colostrum composition, yield (CY) and gut microbiota of sows and piglets. Sows were allocated to either a control diet (n = 19) or a control diet supplemented with 2g YD/kg (n = 18) during the pregnancy. Piglets suckling belonging to the control sows (n = 114) and supplemented sows (n = 108) were also included in the study. Gut microbiota populations of sows at farrowing and piglets at one and four weeks of age were assessed using 16S rRNA gene sequencing. Colostrum samples were examined for nutritional composition and immunoglobulin (Ig) content. All piglets were individually weighed at birth and 24 hours later in order to calculate CY, and later at four weeks to calculate average daily gain (ADG). Protein, lactose and dry matter content of colostrum did not significantly differ between the two groups, while sows fed YD had higher levels of fat in their colostrum (P < 0.05). Immunoglobulin A, IgM and IgG levels in colostrum did not differ between the two groups (P >0.05). Colostrum yield was lower in the control than that in YD group (3701g vs. 4581 g; P <0.05). Although the YD supplementation did not change fecal bacteria diversity in sow, more beneficial and fermentative bacteria (Roseburia, Paraprevotella, Eubacterium) were found in the YD fed group (P <0.01) while, some opportunistic pathogens, including Proteobacteria, especially the genera Desulfovibrio, Escherichia/Shigella and Helicobacter, were suppressed. Piglets at one week of age from sows fed YD had more beneficial microbial populations with significant diversity and fewer opportunistic pathogens. Additionally, we established a Pearson’s correlations between CY, colostrum components, piglet birth weight and fecal microbiota. Therefore, YD added to the sow diet during pregnancy increases colostrum availability and its energy content for neonate piglets, also promoting beneficial maternal microbial sources for neonate.
Highlights
Yeast derivatives (YD) are widely used in animal nutrition as natural additives [1,2]
Our hypothesis was that the inclusion of YD in a gestating diet would modify the hindgut microbiota of the sow and that the modifications could be associated with better colostrum yield, immunoglobulins content
Piglets growing more slowly and with poor average daily gain (ADG) had more Desulfovibrio, Acidaminobacter, Dethiosulfatibacter, Fastiduisipila, Ruminnococcus and Anaerotruncus (Fig 4) at one week of age (P
Summary
Yeast derivatives (YD) are widely used in animal nutrition as natural additives [1,2]. YD typically contains a complex of mannan oligosaccharides (MOS) and polysaccharides, glucomannoproteins, and betaglucans They are commonly produced by enzymatic hydrolysis of different yeasts and contain mainly the insoluble cell wall fraction after separation of the soluble extract fraction. The YD used in the study was derived from brewer’s yeast (Saccharomyces cerevisiae) by acid hydrolysis, containing both cell wall and extract fractions and a reasonably high level of soluble compounds such as oligosaccharides and peptides (detailed composition is shown in S2 Text). The first aim of this study was to determine the effects of YD inclusion in sows’ gestation diets on CY, colostrum immunoglobulins, nutritional composition and subsequent litter performance. Our hypothesis was that the inclusion of YD in a gestating diet would modify the hindgut microbiota of the sow and that the modifications could be associated with better colostrum yield, immunoglobulins content. We hypothesized that piglets of the sows fed a YD diet would have better gut microbiota colonization, possibly contributing to better piglet performance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.