Abstract
Nutritional factors strongly influence fish larval development and skeletogenesis, and may induce skeletal deformities. Vitamin K (VK) has been largely disregarded in aquaculture nutrition, despite its important roles in bone metabolism, in γ-carboxylation of Gla proteins, and in regulating gene expression through the pregnane X receptor (Pxr). Since the mechanisms mediating VK effects over skeletal development are poorly known, we investigated the effects of VK-supplementation on skeletal development in Senegalese sole larvae, aiming to identify molecular pathways involved. Larvae were fed live preys enriched with graded levels of phylloquinone (PK) (0, 50, and 250 mg kg(-1)) and survival rate, growth, VK contents, calcium content and incidence of skeletal deformities were determined, revealing an improvement of larval performance and decreasing the incidence of deformities in VK-supplemented groups. Comparative proteome analysis revealed a number of differentially expressed proteins between Control and Diet 250 associated with key biological processes including skin, muscle, and bone development. Expression analysis showed that genes encoding proteins related to the VK cycle (ggcx, vkor), VK nuclear receptor (pxr), and VK-dependent proteins (VKDPs; oc1 and grp), were differentially expressed. This study highlights the potential benefits of increasing dietary VK levels in larval diets, and brings new insights on the mechanisms mediating the positive effects observed on larval performance and skeletal development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.