Abstract

BackgroundThe Mediterranean diet is considered one of the healthier food habits and olive oil is one of its key components. Olive oil polyphenols are known to induce beneficial effects in several pathological conditions, such as inflammatory bowel disease, and to contrast the proliferation of cancer cells or hypercholesterolemia. Polyphenols are also present in waste products derived from the olive industry: olive mill wastewaters (OMWW) are rich in polyphenols and there is an increasing interest in using OMWW in animal nutrition. OMWW are attributed with positive effects in promoting chicken performance and the quality of food-derived products. However, a tissue-specific transcriptome target analysis of chickens fed with OMWW has never been attempted.ResultsWe explored the effect of dietary OMWW on the intestinal function in broilers. A morphological analysis of the jejunum revealed that OMWW reduced crypt depth, whereas no significant modifications were observed for villus height and the villus height/crypt depth ratio. An RNA Sequencing analysis was performed on isolated, intestinal, epithelial cells and 280 differentially expressed genes were found using a count-based approach. An enrichment analysis revealed that the majority of up regulated genes in the OMWW group were over-represented by the regulation of viral genome replication-related GO-Terms, whereas down regulated genes were mainly involved in cholesterol and lipid metabolism.ConclusionsOur study showed how an industrial waste product can be recycled as a feed additive with a positive relapse. OMWW dietary supplementation can be a nutritional strategy to improve chicken performance and health, prevent intestinal damage, enhance innate immunity and regulate cholesterol metabolism and fat deposition.

Highlights

  • The Mediterranean diet is considered one of the healthier food habits and olive oil is one of its key components

  • This study revealed that chicken dietary supplementation with olive mill wastewaters (OMWW) induces changes at both a morphological and transcriptional level in the jejunum mucosa tract

  • The down regulation of genes involved in lipid metabolism observed in our study suggests that the analysis of the effects of dietary OMWW on liver and adipose tissue, which are important nutrigenomic target tissues, could be a further objective of this research

Read more

Summary

Introduction

The Mediterranean diet is considered one of the healthier food habits and olive oil is one of its key components. Olive oil polyphenols are known to induce beneficial effects in several pathological conditions, such as inflammatory bowel disease, and to contrast the proliferation of cancer cells or hypercholesterolemia. Olive oil polyphenols show versatile properties in metabolic diseases: it has been reported that oleuropein and hydroxytyrosol combat obesity, by reducing the intracellular deposit of triglyceride and decreasing the expression of genes related to the adipogenesis pathway [10,11,12]. Olive oil polyphenols have a beneficial effect on the cancer cell line model: in vitro studies reveal that pinoresinol inhibits the proliferation of colon and prostate tumor cells and induces apoptosis in human leukaemia cells [14] Oleuropein, in addition, is capable of preventing colon rectal cancer in mice [15]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call