Abstract
BackgroundThis study evaluated the effects of Eimeria spp. challenge and dietary supplementation with free methionine or methionine dipeptide on animal performance; expression of genes associated with the immune system, antioxidant system, and amino acid transport in the jejunum; and redox status of the jejunum of broiler chickens.MethodsA randomized, 2 × 3 factorial design was used, in which Eimeria spp. challenge was the first factor (Eimeria-challenged, EC, or unchallenged, UC, broilers) and methionine supplementation was the second factor (non-supplemented, NS; free dl-methionine, dl-Met; and methionine dipeptide, dl-methionyl-dl-methionine, dl-MMet). At 14 days of age, chickens were inoculated orally with sporulated oocysts of Eimeria acervulina, Eimeria praecox, Eimeria maxima, and Eimeria mitis. Birds were killed by cervical dislocation 144 h post-inoculation (PI), and the jejunum was collected for biochemical and molecular analyses.ResultsEC broilers had a 13% lower feed intake (FI), 37% lower body weight gain (BWG), and 39% higher feed conversion ratio (FCR) than UC broilers. Chickens fed the dl-Met diet had higher BWG (about 12% higher) and better FCR (about 12% lower) than chickens fed the NS diet. EC chickens had lower relative weight of the bursa of Fabricius (51.8%) and higher relative weights of the spleen and whole intestine (53.6% and 26.3%, respectively) than UC chickens. Eimeria spp. challenge led to an increase in the levels of oxidative substances, such as nitrite and thiobarbituric acid reactive substances (TBARS), in the jejunum of chickens 144 h PI. Among UC chickens, those fed the dl-Met diet had higher total antioxidant capacity (TAC) and lower catalase (CAT) and superoxide dismutase (SOD) activities. EC chickens that received the NS diet had higher carbonylated protein content (CP). This result was associated with their lower TAC and catalase activity. The lower TAC in EC chickens might have been due to reduced expression of catalase (CAT) and superoxide dismutase 1 (SOD1) genes. Chickens fed the dl-Met and dl-MMet diets had lower nitrite content. Eimeria spp. challenge suppressed neutral amino acid transporter 1 (B0AT1), peptide transporter 1 (PEPT1), toll-like receptor 5 (TLR5), interleukin 2 (IL2), and occludin (OCLN) gene expression and enhanced cationic amino acid transporter 1 (CAT-1) and interferon gamma (IFNG) gene expression. The highest PEPT1 expression level was observed in broilers fed the dl-MMet diet, and the lowest TLR5 expression level was found in broilers fed the NS diet.ConclusionOur results show for the first time that supplementation with methionine as free amino acid or dipeptide helps protect the intestinal cells of broilers under Eimeria spp. challenge from the oxidative damage induced by free radicals, mainly through modulation of the antioxidant system.
Highlights
MethodsA randomized, 2 × 3 factorial design was used, in which Eimeria spp. challenge was the first factor (Eimeria-challenged, EC, or unchallenged, UC, broilers) and methionine supplementation was the second factor (non-supplemented, NS; free DL-methionine, free DLmethionine (DL-Met); and methionine dipeptide, DL-methionyl-DL-methionine, DLMMet)
This study evaluated the effects of Eimeria spp. challenge and dietary supplementation with free methionine or methionine dipeptide on animal performance; expression of genes associated with the immune system, antioxidant system, and amino acid transport in the jejunum; and redox status of the jejunum of broiler chickens
Our results show for the first time that supplementation with methionine as free amino acid or dipeptide helps protect the intestinal cells of broilers under Eimeria spp. challenge from the oxidative damage induced by free radicals, mainly through modulation of the antioxidant system
Summary
A randomized, 2 × 3 factorial design was used, in which Eimeria spp. challenge was the first factor (Eimeria-challenged, EC, or unchallenged, UC, broilers) and methionine supplementation was the second factor (non-supplemented, NS; free DL-methionine, DL-Met; and methionine dipeptide, DL-methionyl-DL-methionine, DLMMet). At 14 days of age, chickens were inoculated orally with sporulated oocysts of Eimeria acervulina, Eimeria praecox, Eimeria maxima, and Eimeria mitis. Animals and experimental design A total of 384 one-day-old unvaccinated Cobb 500 male broilers were used. Chicks were raised conventionally up to 10 days of age, after which they were reared following a completely randomized, 2 × 3 factorial design with eight replicates of eight birds per treatment. The first factor was Eimeria spp. challenge (Eimeria-challenged, EC, or unchallenged, UC, broilers) and the second factor was methionine supplementation (non-supplemented, NS; free DL-methionine, DL-Met; and DL-methionyl-DL-methionine, DL-MMet). Before birds were submitted to the respective treatments, they were fasted for 6 h and weighed
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.