Abstract

Direct-fed microbials (DFMs) are dietary supplements containing live microorganisms which confer a performance and health benefit to the host, but the mechanisms are unclear. Here, a metabolomics approach was used to identify changes in intestinal metabolite levels in chickens fed an unsupplemented diet or a diet supplemented with B. subtilis strain 1781 or strain 747. Body weight gains of chickens fed the B. subtilis-supplemented diets were increased up to 5.6% in the B. subtilis 1781 group and 7.6% in the B. subtilis 747 group compared with chickens fed the unsupplemented diet. Compared with unsupplemented controls, the levels of 83 metabolites were altered (p < 0.05) (25 increased, 58 decreased) in chickens given the B. subtilis 1781-supplemented diet, while 50 were altered (p < 0.05) (12 increased, 38 decreased) with the B. subtilis 747-supplemented diet. Twenty-two metabolites were altered (p < 0.05) (18 increased, 4 decreased) in the B. subtilis 1781 vs. B. subtilis 747 groups. A random forest analysis of the B. subtilis 1781 vs. control groups gave a predictive accuracy of 87.5%, while that of the B. subtilis 747 vs. control groups was 62.5%. A random forest analysis of the B. subtilis 1781 vs. B. subtilis 747 groups gave a predictive accuracy of 75.0%. Changes in the levels of these intestinal biochemicals provided a distinctive biochemical signature unique to each B. subtilis-supplemented group, and were characterized by alterations in the levels of dipeptides (alanylleucine, glutaminylleucine, phenylalanylalanine, valylglutamine), nucleosides (N1-methyladenosine, N6-methyladenosine, guanine, 2-deoxyguanosine), fatty acids (sebacate, valerylglycine, linoleoylcholine), and carbohydrates (fructose). These results provide the foundation for future studies to identify biochemicals that might be used to improve poultry growth performance in the absence of antibiotic growth promoters.

Highlights

  • Microbial resistance to antibiotics is a serious and growing public health problem worldwide with multiple causes [1, 2]

  • Chickens were fed from 14 to 21 days post-hatch with a basal diet, or a basal diet supplemented with 1.5 × 105 colony forming units (CFU)/g feed of B. subtilis strain 1781 or B. subtilis strain 787

  • A total of 674 biochemicals were identified in the intestinal contents of chickens fed an unsupplemented, control diet, or a diet supplemented with B. subtilis 1781 or B. subtilis 747

Read more

Summary

Introduction

Microbial resistance to antibiotics is a serious and growing public health problem worldwide with multiple causes [1, 2]. Dietary antibiotic growth promoters (AGPs) have been used in the food animal industry for more than 60 years to increase feed efficiency and improve growth performance [3, 4]. Increasing evidence, suggests that AGP use in food animal production leads to the development of antibiotic resistance among the endogenous gut commensal microbiota with the potential for transfer to the human population [5,6,7,8,9]. There is an unmet need to elucidate the molecular and cellular interactions between the intestinal microbiota and host that might be modulated by other means to promote food animal growth in the absence of AGPs. Among the substances that have been tested as alternatives to AGPs are probiotics and direct-fed microbials (DFMs) [10,11,12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.