Abstract

Methionine is an essential amino acid (AA) with many fundamental roles. Humans often supplement l-Met, whereas dl-Met and dl-2-hydroxy-4-(methylthio)butanoic acid (dl-HMTBA) are more frequently used to supplement livestock. The study aimed to investigate whether dietary Met source alters the absorptive capacity for Met isomers in the small intestine of piglets. A total of 27 male 10-wk-old piglets in 3 feeding groups received a diet supplemented with 0.21% dl-Met, 0.21% l-Met, or 0.31% dl-HMTBA to meet the Met+cystine requirement. After ≥10 d, absorptive fluxes of d-Met or l-Met were measured at a physiological concentration of 50 μM and a high concentration of 5mM in duodenum, middle jejunum, and ileum ex vivo. Data were compared by 2-factor ANOVA. Across diets, fluxes of both Met isomers at both tested concentrations increased from duodenum to ileum by a factor of ∼2-5.5 (P <0.05). Pigs supplemented with dl-Met had greater (P <0.085) absorptive fluxes at 50 μM l-Met (0.50, 2.07, and 3.86 nmol · cm-2 · h-1) and d-Met (0.62, 1.41, and 1.19 nmol · cm-2 · h-1) than did pigs supplemented with dl-HMTBA (l-Met: 0.28, 0.76, and 1.08 nmol · cm-2 · h-1; d-Met: 0.34, 0.58, and 0.64 nmol · cm-2 · h-1) in duodenum, jejunum, and ileum, respectively. Only in jejunum of dl-Met-fed pigs, fluxes at 50 μM l-Met were reduced by the omission of luminal Na+ (from 3.27 to 0.86 nmol · cm-2 · h-1; P <0.05) and by a cocktail of 22 luminal AAs (to 1.05 nmol · cm-2 · h-1; P <0.05). Dietary supplementation of dl-Met increases the efficiency of l-Met and d-Met absorption at physiologically relevant luminal Met concentrations along the small intestine of pigs, including a very prominent induction of an Na+-dependent transport system with preference for l-Met in the mid-jejunum. Dietary supplementation with dl-Met could be a promising tool to improve the absorption of Met and other AAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.