Abstract

BackgroundSeaweed-derived polysaccharides (SDP) represent an attractive source of prebiotic nutraceuticals for the food and animal husbandry industry. However, the mechanism by which SDP from Enteromorpha mediates pig growth are not fully understood. This study aimed to investigate how SDP supplementation influences the growth performance and intestinal health in weaned pigs.ResultsIn Exp. 1, 240 weaned pigs were randomly assigned to four dietary treatments and fed with a basal diet or a basal diet containing 200, 400 or 800 mg/kg SDP, respectively, in a 21-day trial. Pigs on the 400 or 800 mg/kg SDP-supplemented group had greater ADG and lower F/G ratio than those on the control group (P<0.05). In Exp. 2, 20 male weaned pigs were randomly assigned to two treatments and fed with a basal diet (CON group) or a basal diet supplemented with 400 mg/kg SDP (the optimum does from Exp. 1), in a 21-day trial. Pigs fed the SDP diet had greater ADG, the concentrations of serum IL-6 and TNF-α and the activities of glutathione peroxidase, superoxide dismutase and catalase (P<0.05), and lower F/G, diarrhea rate, as well as serum D-lactate concentrations and diamine oxidase activity (P<0.05). Moreover, dietary SDP supplementation enhanced secretory immunoglobulin A content, villus height and villous height: crypt depth ratio in small intestine, as well as the lactase and maltase activities in jejunum mucosa (P<0.05). SDP supplementation elevated the mRNA levels of inflammatory response-related genes (IL-6, TNF-α, TLR4, TLR6 and MyD88), and the mRNA and protein levels of ZO-1, claudin-1 and occludin in jejunum mucosa (P<0.05). Importantly, SDP not only increased the Lactobacillus population but also reduced the Escherichia coli population in cecum (P<0.05). Furthermore, SDP increased acetic acid and butyric acid concentrations in cecum (P<0.05).ConclusionsThese results not only suggest a beneficial effect of SDP on growth performance and intestinal barrier functions, but also offer potential mechanisms behind SDP-facilitated intestinal health in weaned pigs.

Highlights

  • The intestinal epithelial barrier, mainly involves a single layer of epithelial cells that are interconnected by tight junctions, plays a pivotal role in controlling absorption of nutrients and preventing pathogens and toxins from entering the systemic circulation [1, 2]

  • It has been shown that the benefits of seaweed polysaccharides as functional ingredients during the early stage may result from reduced intestinal inflammatory response and improved intestinal morphology [7, 10, 11]

  • Growth performance and diarrhea index (Exp. 1) As shown in Table 4, there were no significant differences in average daily feed intake (ADFI) between the pigs fed the consisting of the basal diet (CON) diet and the Seaweed-derived polysaccharides (SDP) diets

Read more

Summary

Introduction

The intestinal epithelial barrier, mainly involves a single layer of epithelial cells that are interconnected by tight junctions, plays a pivotal role in controlling absorption of nutrients and preventing pathogens and toxins from entering the systemic circulation [1, 2]. Seaweed-derived polysaccharides (SDP) are one of the most abundant polysaccharides in marine organisms, which have been confirmed to exhibit wide variety of biological and pharmacological activities, including antioxidation [6], immunomodulation [7], anticoagulant activity [8] and gastrointestinal protection [9]. These properties seem to impel SDP to serve as an effective dietary supplement for improving the growth performance and health of neonatal mammals. This study aimed to investigate how SDP supplementation influences the growth performance and intestinal health in weaned pigs

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.