Abstract
ObjectivesTo evaluate the effects of dietary restriction on oxidative status, the HuC/D–neuronal nitric oxide synthase (nNOS) myenteric neuron population, HuC/D-S100 glial cells, and the morphometry of the small intestine in rats at various ages. MethodsFifteen Wistar rats were divided into 7-and 12-mo-old control groups and a 12-mo-old experimental group subjected to dietary restrictions (50% of normal ration) for 5 mo. At 7 and 12 mo of age, the animals were anesthetized, and blood was collected to assess the biochemical components and oxidative status. Ileum samples were subjected to double-marker (HuC/D-nNOS and HuC/D-S100) immunostaining and histologic processing to morphometrically analyze intestinal wall elements and determine the metaphase index and rate of caliciform cells. The data were subjected to analysis of variance and the Tukey post hoc test with a 5% significance level. ResultsAge affected the oxidative status by increasing lipid peroxidation, with no effect on blood components, intrinsic innervation, and intestinal wall elements. The animals subjected to dietary restriction showed improved levels of total cholesterol, triacylglycerols, and oxidative status, with no changes in the nNOS neuron population. However, the dietary restriction dramatically decreased the glial and HuC/D myenteric populations, led to atrophy of the neuronal cell body, induced glial hypertrophy, and decreased the thickness of the intestinal wall. ConclusionThe high oxidative status of the aging animals was reversed by dietary restriction, which also lowered cholesterol and triacylglycerol levels. The present dietary restriction elicited morpho-quantitative changes in the myenteric plexus and histology of the ileum, with likely effects on intestinal functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.