Abstract

Background:Type 2 diabetes (T2D) is the leading cause of nephropathy in the United States. Renal complications of T2D include proteinuria and suboptimal serum 25-hydroxycholecalciferol (25D) concentrations. 25D is the major circulating form of vitamin D and renal reabsorption of the 25D–vitamin D–binding protein (DBP) complex via megalin-mediated endocytosis is believed to determine whether 25D can be activated to 1,25-dihydroxycholecalciferol (1,25D) or returned to circulation. We previously demonstrated that excessive urinary excretion of 25D–DBP and albuminuria occurred in rats with type 1 diabetes (T1D) and T2D. Moreover, feeding rats with T1D high-amylose maize partially resistant to digestion [resistant starch (RS)] prevented excretion of 25D–DBP without significantly affecting hyperglycemia. Objective:We used Zucker diabetic fatty (ZDF) rats, a model of obesity-related T2D, to determine whether feeding RS could similarly prevent loss of vitamin D and maintain serum 25D concentrations. Methods:Lean control Zucker rats (n = 8) were fed a standard semi-purified diet (AIN-93G) and ZDF rats were fed either the AIN-93G diet (n = 8) or the AIN-93G diet in which cornstarch was replaced with RS (550 g/kg diet; 35% resistant to digestion) (n = 8) for 6 wk. Results:RS attenuated hyperglycemia by 41% (P < 0.01) and prevented urinary DBP excretion and albuminuria, which were elevated 3.0- (P < 0.01) and 3.6-fold (P < 0.01), respectively, in control diet–fed ZDF rats. Additionally, urinary excretion of 25D (P = 0.01) and 1,25D (P = 0.03) was higher (89% and 97%, respectively), whereas serum 25D concentrations were 31% lower (P < 0.001) in ZDF rats fed the control diet compared with RS-fed ZDF rats. Histopathologic scoring of the kidney revealed that RS attenuated diabetes-mediated damage by 21% (P = 0.12) despite an ∼50% decrease in megalin protein abundance. Conclusions:Taken together, these data provide evidence that suggests vitamin D balance can be maintained by dietary RS through nephroprotective actions in T2D, which are independent of vitamin D supplementation and renal expression of megalin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.