Abstract
Plant serine proteinase inhibitors (Pls) have the potential to restrict the growth and/or development of herbivorous insects. However, there are limitations to the efficacy of these Pls. An insect's susceptibility to a Pl is determined, at least in part, by the relative proportion of proteolytic enzyme activity in the midgut that is suppressed by that inhibitor. Insects adapt to dietary trypsin inhibitor in their host plant by secreting “inhibitor-resistant” trypsin(s). These “inhibitor-resistant” enzyme(s) may be the standard proteinase(s) secreted into the midgut (e.g., Pieris rapae), or may be enhanced following ingestion of proteinase inhibitor (e.g., Helicoverpa zea). In addition, insects may be pre-adapted to specific Pl(s), following adaptation to a Pl from the same family. For example, Pieris rapae is a crucifer specialist that is resistant to cabbage Pl, but is also resistant to Kunitz soybean trypsin inhibitor, a Pl in the same family as cabbage Pl, but from a non-host plant. The ultimate value of this pre-adaptation to herbivory by a species of insect will be determined by the number of different families of Pl in host plant(s) to which the species has adapted, and the distribution of those families among other species of plants. Thus, it is possible that the presence of a plant Pl limits herbivory by insect(s). However, multiple inhibitors, matched to the complement of enzymes in the insect's midgut, may be required to enhance this resistance of plants to herbivorous insects. © 1996 Wiley-Liss, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.