Abstract

Pharmacological administration of fibroblast growth factor 21 (FGF21) alters food choice, including that it decreases the consumption of sucrose and other sweet tastants. Conversely, endogenous secretion of FGF21 by the liver is modulated by diet, such that plasma FGF21 is increased after eating foods that have a low dietary protein: total energy (P: E) ratio. Together, these findings suggest a strategy to promote healthy eating, in which the macronutrient content of a pre-load diet could reduce the consumption of sweet desserts in sated mice. Here, we tested the prediction that individuals maintained on a low P: E diet, and offered a highly palatable sweet ‘dessert’ following a pre-load meal, would eat less of the sugary snack compared to controls—due to increased FGF21 signaling. In addition to decreasing sweet intake, FGF21 increases the consumption of dietary protein. Thus, we predicted that individuals maintained on the low P: E diet, and offered a very high-protein pellet as ‘dessert’ or snack after a meal, would eat more of the high protein pellet compared to controls, and that this depends on FGF21. We tested this in C57Bl/6J, and liver-specific FGF21-null (FGF21ΔL) null male and female mice and littermate controls. Contrary to expectation, eating a low protein pre-load did not reduce the later consumption of a sweet solution in either males or females, despite robustly increasing plasma FGF21. Rather, eating the low protein pre-load increased later consumption of a high protein pellet. This was more apparent among males and was abrogated in the FGF21ΔL mice. We conclude that physiologic induction of hepatic FGF21 by a low protein pre-load diet is not sufficient to reduce the consumption of sweet desserts, though it effectively increases the subsequent intake of dietary protein in male mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.