Abstract

Ecologists increasingly determine the δ15 N values of amino acids (AA) in animal tissue; "source" AA typically exhibit minor variation between diet and consumer, while "trophic" AA have increased δ15 N values in consumers. Thus, trophic-source δ15 N offsets (i.e., Δ15 NT-S ) reflect trophic position in a food web. However, even minor variations in δ15 Nsource AA values may influence the magnitude of offset that represents a trophic step, known as the trophic discrimination factor (i.e., TDFT-S ). Diet digestibility and protein content can influence the δ15 N values of bulk animal tissue, but the effects of these factors on AA Δ15 NT-S and TDFT-S in mammals are unknown. We fed captive mice (Mus musculus) either (A) a low-fat, high-fiber diet with low, intermediate, or high protein; or (B) a high-fat, low-fiber diet with low or intermediate protein. Mouse muscle and dietary protein were analyzed for bulk tissue δ15 N using elemental analyzer-isotope ratio mass spectrometry (EA-IRMS), and were also hydrolyzed into free AA that were analyzed for δ15 N using gas chromatography-combustion-IRMS. As dietary protein increased, Δ15 NConsumer-Diet slightly declined for bulk muscle tissue in both experiments; increased for AA in the low-fat, high-fiber diet (A); and remained the same or decreased for AA in the high-fat, low-fiber diet (B). The effects of dietary protein on Δ15 NT-S and on TDFT-S varied by AA but were consistent between variables. Diets were less digestible and included more protein in Experiment A than in Experiment B. As a result, the mice in Experiment A probably oxidized more AA, resulting in greater Δ15 NConsumer-Diet values. However, the similar responses of Δ15 NT-S and of TDFT-S to diet variation suggest that if diet samples are available, Δ15 NT-S accurately tracks trophic position. If diet samples are not available, the patterns presented here provide a basis to interpret Δ15 NT-S values. The trophic-source offset of Pro-Lys did not vary across diets, and therefore may be more reliable for omnivores than other offsets (e.g., Glu-Phe).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call