Abstract

Phytoestrogens have been shown to inhibit platelet activation by blocking platelet calcium channels. This study examined the effect of several synthetic derivatives of trans-resveratrol, genistein, and daidzein on platelet free intracellular calcium ([Ca2+]i) elevation in thrombin-activated platelets and the possible mechanisms of this inhibitory effect. Studies were conducted on fresh human platelets from healthy volunteers. The fluorescent dye fura-2 was used to monitor [Ca2+]i in platelets. At 10 microM-resveratrol, triacetyl-trans-resveratrol, and trimethoxy-trans-resveratrol produced, respectively, 57 +/- 4%, 40 +/- 4%, and 21 +/- 1% inhibition; genistein, acetylgenistein, and dihydrogenistein produced 51 +/- 10%, 26 +/- 7%, and 16 +/- 2% inhibition, respectively; daidzein and diacetyldaidzein produced 56 +/- 5% and 45 +/- 10% inhibition of thrombin-induced [Ca2+]i elevation. The inhibitory effect was immediate and appeared to directly affect the calcium influx channels. Phytoestrogen action on [Ca2+]i did not cause alteration in nitric oxide signaling. Tyrosine phosphorylation was not involved in the inhibition of [Ca2+]i elevation by phytoestrogens, because the percent inhibition produced by the tyrosine kinase inhibitor genistein and its inactive analogue daidzein on thrombin-induced and thapsigargin-induced [Ca2+]i elevation was not significantly different for either compound at any concentration tested. Structure-activity relationship studies on this limited set of compounds reveal the requirements for the stilbene pharmacophore for the calcium-blocking activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call