Abstract

Low-grade albuminuria is an indicator of endothelial dysfunction and is associated with an increased risk of cardiovascular disease. A graded level of exposure to bisphenol A was recently identified to be associated with increased risk of low-grade albuminuria in children and adults. Because bisphenol A and phthalates coexist as dietary contaminants, this study investigated whether exposure to phthalates is also associated with low-grade albuminuria. Data were examined from 667 children who participated in the 2009-2010 National Health and Nutrition Examination Survey and who had results for urinary phthalate metabolites and albumin excretion. Urinary albumin and creatinine concentrations were measured in a first morning specimen using a solid-phase fluorescent immunoassay and a Roche/Hitachi Modular P Chemistry Analyzer with an enzymatic method, respectively. Phthalate metabolites were analyzed in a separate spot urine sample from each participant, using high-performance liquid chromatography and tandem mass spectroscopy. For each (roughly) 3-fold increase in metabolites of di-2-ethylhexylphthalate (a high molecular weight phthalate commonly found in foods), a 0.55 mg/g increase in albumin/creatinine ratio (ACR) was identified (P=0.02), whereas a 1.30-fold odds of a higher ACR quartile was also identified for each (roughly) 3-fold increase (P=0.02). Higher ACR was not identified in relationship to metabolites of lower molecular phthalates commonly found in lotions or shampoos, suggesting specificity. Although reverse causation and unmeasured confounders represent alternative explanations, these findings, in conjunction with our earlier data on bisphenol A, indicate that a wide array of environmental toxins may adversely affect albuminuria and potentially increase the risk of cardiovascular disease. In view of the potential long-term health implications of ongoing exposure in this vulnerable subpopulation, our data support both further study and renewed regulatory efforts to limit exposure during childhood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call