Abstract

Simple SummaryMeagre is a target species to diversify marine aquaculture in Europe due to its high growth rates and an excellent nutritional profile. Nevertheless, this species is highly sensitive to low temperatures. The objective of this study was to evaluate the effect of dietary phospholipid (PL) levels on growth and cold tolerance. Animals fed with a PL-enriched diet grew faster and significantly reduced the risk of death and increased the lethal doses 50 and 90 without modifying the average temperature at death. Regarding lipid profiles, the cold challenge promoted a general fatty acid accumulation in the liver that was attenuated in fish fed with the PL-enriched diet preventing the negative effect of a fatty liver.Meagre (Argyrosomus regius) is a fast-growing species currently produced in aquaculture. This species is highly sensitive to low environmental temperatures which results in high mortality events during production cycles. In this study, the effects of dietary phospholipids (PLs) on growth and cold tolerance were evaluated. For this purpose, control (CTRL) and PL-enriched diets (three-fold higher levels than CTRL) were supplied to meagre juveniles (12.9 ± 2.5 g) for 60 days, and growth was determined using a longitudinal approach. Weight gaining and SGR reduction were significantly different between dietary treatments. Animals fed with the PL-enriched diet were 4.1% heavier and grew 3.2% faster than those fed with the CTRL diet. Survival was higher than 98% in both groups. After finishing the growth trial, animals were submitted to two cold challenges and cold tolerance was evaluated as temperature at death (Tdeath), risk to death and lethal doses (LD) 50 and 90 using the cumulative degree cooling hours 6 h (CD6H). Tdeath ranged between 7.54 and 7.91 °C without statistical differences between dietary treatments. However, risk to death was significantly smaller (0.91-fold lower) and LD50 and LD90 were higher in animals fed with the PL-enriched than those supplied the CTRL diet. To assess the fatty acid (FA) composition of liver and brain in animals fed both diets after a cold challenge, FA profiles were determined in juveniles maintained at 14 °C and challenged at 7 °C. FA amounts increased in the liver of animals challenged at 7 °C. In contrast, several FAs reduced their levels in the PL-enriched diet with respect to CTRL indicating that these animals were able to mobilize efficiently lipids from this organ mitigating the negative effects of lipid accumulation during the cold challenge. In brain, the PL-enriched diet increased DHA level during the cold shock indicating a role in maintaining of brain functions. These results open a new research line that could improve the cold tolerance of meagre through dietary supplementation before winter.

Highlights

  • Water temperature is a key environmental factor that highly modulates cell physiology, metabolic rates, growth, reproduction and survival in fish [1,2]

  • A repeated-measures ANOVA analysis identified a statistically significant interaction diet × time for weight and Specific growth rate (SGR) indicating that weight gaining and SGR reduction were different between dietary treatments

  • This study demonstrates that dietary PLs promote growth in meagre juveniles

Read more

Summary

Introduction

Water temperature is a key environmental factor that highly modulates cell physiology, metabolic rates, growth, reproduction and survival in fish [1,2]. Temperature changes modify cellular membrane fluidity, water and substrate exchanges, the enzyme catalytic activities and protein-folding [3,4]. Depending on the magnitude of these changes and the adaptative responses, animals die or suffer sublethal functional effects. Reproduction performance is highly dependent on temperature due to the capacity to modify gametogenesis, gonad maturation and the time and course of spawning. Environmental temperature acts as a modulator of embryo programming, egg quality and larvae growth trajectories [2,5,6,7,8]. Temperature shifts have a profound impact on fish population and ecological communities and might become a serious threat to global fish biodiversity [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call