Abstract

Acid-catalyzed nitrosation and production of potentially carcinogenic nitrosative species is focused at the gastroesophageal junction, where salivary nitrite, derived from dietary nitrate, encounters the gastric juice. Ascorbic acid provides protection by converting nitrosative species to nitric oxide (NO). However, NO may diffuse into adjacent lipid, where it reacts with O 2 to re-form nitrosative species and N-nitrosocompounds (NOC). In this way, ascorbic acid promotes acid nitrosation. Using a novel benchtop model representing the gastroesophageal junction, this study aimed to clarify the action of a range of water-soluble antioxidants on the nitrosative mechanisms in the presence or absence of lipids. Caffeic, ferulic, gallic, or chlorogenic and ascorbic acids were added individually to simulated gastric juice containing secondary amines, with or without lipid. NO and O 2 levels were monitored by electrochemical detection. NOC were measured in both aqueous and lipid phases by gas chromatography–tandem mass spectrometry. In the absence of lipids, all antioxidants tested inhibited nitrosation, ranging from 35.9 ± 7.4% with gallic acid to 93 ± 0.6% with ferulic acid. In the presence of lipids, the impact of each antioxidant on nitrosation was inversely correlated with the levels of NO they generated ( R 2 = 0.95, p < 0.01): gallic, chlorogenic, and ascorbic acid promoted nitrosation, whereas ferulic and caffeic acids markedly inhibited nitrosation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call