Abstract
Ruminants are very capable of adapting their N homeostasis to a reduced dietary N intake. However, the limits of this physiological adaptation are still unknown. The aim of the present study was to determine the quantity of dietary N intake at which the needs of the animal are still satisfied. A study was performed in young White Saanen goats under conditions of dietary N reduction. Different semisynthetic diets with 19 to 7% CP were fed. Urea transport rates across the rumen epithelium from the blood into the ruminal fluid were quantified by Ussing chamber experiments. Reduced N intake increased urea transport rates across the mucosa, which could be inhibited by phloretin. The role of parietal urease in driving urea transfer across the epithelium was negligible because its activity was inhibited by antibiotics during in vitro incubations of the epithelium. Concentrations of ammonia in the ruminal fluid were decreased by reducing dietary N intake, accompanied by diminished urease activity at the smallest dietary N intake. Over the range of plasma urea concentrations observed in the different feeding groups, salivary urea concentrations were 73% of plasma urea concentrations. By plotting plasma urea concentrations against serosal to mucosal urea flux rates, a threshold at 1.75 mmol of urea/L of plasma could be assessed, below which urea flux was strongly increased. This indicates that rumen urea transfer could be stimulated by decreased plasma urea concentrations via unknown mechanisms. The physiological relevance of this adaptation of the rumen epithelium is that it is considered a central mechanism in the N homeostasis of growing goats under reduced N intake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.