Abstract
Xerostomia, a major oral symptom of menopause, is a subjective feeling of dry mouth associated with oral pain and difficulties in deglutition and speech, which significantly reduces patient's quality of life. Dietary nitrate, which can be converted to nitric oxide, has multiple physiological functions in the body, including antioxidant activity and vasodilatation; however, its protective effect against xerostomia remains poorly understood. The present study aimed to evaluate the effects of dietary nitrate on estrogen deficiency-induced xerostomia. We established an ovariectomized (OVX) rat model, which included five groups: sham-operated, OVX, OVX + 0.4 mM nitrate, OVX + 2 mM nitrate, and OVX + 4 mM nitrate (n = 6). After ovariectomy, animals in the nitrate treatment groups received appropriate amounts of sodium nitrate dissolved in distilled water for 3 months. The results showed that nitrate treatment reduced body weight and water intake, and increased serum nitrate and nitrite levels. Furthermore, nitrate uptake increased saliva secretion as evidenced by saliva flow rates and aquaporin 5 expression, and alleviated histological lesions as evidenced by reduction of the fibrotic area and cell atrophy in the salivary glands. Although protective effects of nitrate against estrogen deficiency-induced xerostomia were observed at all doses, treatment with 2 mM nitrate was more effective than that with 0.4 mM and 4 mM nitrate. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase-3 expression analyses showed that nitrate also protected cells from apoptosis, possibly through upregulation of Cu-Zn superoxide dismutase (Cu-Zn SOD) known to inhibit oxidative stress-related apoptosis. Our findings indicate that nitrate could improve functional activity of the salivary glands in OVX rats by suppressing apoptosis and upregulating Cu-Zn SOD expression, suggesting that dietary nitrate may potentially prevent hyposalivation in menopausal women.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.