Abstract

Background— Pulmonary hypertension (PH) is a multifactorial disease characterized by increased pulmonary vascular resistance and right ventricular failure; morbidity and mortality remain unacceptably high. Loss of nitric oxide (NO) bioactivity is thought to contribute to the pathogenesis of PH, and agents that augment pulmonary NO signaling are clinically effective in the disease. Inorganic nitrate (NO 3 − ) and nitrite (NO 2 − ) elicit a reduction in systemic blood pressure in healthy individuals; this effect is underpinned by endogenous and sequential reduction to NO. Herein, we determined whether dietary nitrate and nitrite might be preferentially reduced to NO by the hypoxia associated with PH, and thereby offer a convenient, inexpensive method of supplementing NO functionality to reduce disease severity. Methods and Results— Dietary nitrate reduced the right ventricular pressure and hypertrophy, and pulmonary vascular remodeling in wild-type mice exposed to 3 weeks of hypoxia; this beneficial activity was mirrored largely by dietary nitrite. The cytoprotective effects of dietary nitrate were associated with increased plasma and lung concentrations of nitrite and cGMP. The beneficial effects of dietary nitrate and nitrite were reduced in mice lacking endothelial NO synthase or treated with the xanthine oxidoreductase inhibitor allopurinol. Conclusions— These data demonstrate that dietary nitrate, and to a lesser extent dietary nitrite, elicit pulmonary dilatation, prevent pulmonary vascular remodeling, and reduce the right ventricular hypertrophy characteristic of PH. This favorable pharmacodynamic profile depends on endothelial NO synthase and xanthine oxidoreductase -catalyzed reduction of nitrite to NO. Exploitation of this mechanism (ie, dietary nitrate/nitrite supplementation) represents a viable, orally active therapy for PH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.