Abstract
Different changes in baroreflex control of the circulation have been postulated to play a role in the different blood pressure (BP) effects of dietary sodium in normotensive vs. genetically hypertensive rats. We therefore evaluated in young Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR), with or without chronic sinoaortic denervation (SAD), the effects of low, regular, and high dietary sodium intake from 4 to 8 wk of age on BP and baroreflex function. The latter was assessed by changes in renal sympathetic nerve activity (RSNA) and heart rate in response to (de)pressor agents. In SHR, the above range of sodium caused a marked change in resting BP, somewhat more in intact (48 mmHg) vs. SAD (36 mmHg) rats. In contrast, in WKY this range of sodium intake caused only a minor (7 mmHg) change in resting BP of intact WKY but a significant (16 mmHg) change in WKY with SAD, mainly due to an increase in BP on high sodium. In intact WKY increasing dietary sodium from low to regular to high caused stepwise increases in the gain of the RSNA-BP reflex, whereas in intact SHR only an increase from low to regular sodium intake increased the gain. After SAD, the gain of the RSNA-BP reflex was very low, and no longer affected by dietary sodium in either strain. These data suggest that in WKY a sensitization in arterial baroreflex control of RSNA prevents a sodium-induced increase in BP.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The American journal of physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.