Abstract

The rate and extent of modification of fatty acid composition of mice lung and kidney by dietary menhaden oil (MO) was investigated. White mice were fed 2 wt% safflower oil and either 10 wt% MO or 10 wt% hydrogenated coconut oil (HCO) for 23 d. The stability of dietary MO-induced fatty acid modifications was assessed by replacing the MO diet of a group of mice after 23 d with the HCO diet for an additional 10 d. Mice were sacrificed on d 0, 1, 3, 5, 7, 14, 23 and 33. The n-3 polyunsaturated fatty acid (PUFA), 20:5n-3 and 22:6n-3 were rapidly incorporated into lung and kidney phosphoglyceride (PL) classes during the first 7 d of MO ingestion relative to the controls. After 1 wk of MO consumption, the rate of incorporation either plateaued at an elevated level or continued to increase at a much more gradual rate. A marked increase in the content of 22:5n-3 in lung and kidney was observed. A concomitant and rapid decrease was observed in the n-6 PUFA, 20:4n-6, 22:5n-6 and 18:2n-6. The minimum content of 20:4n-6 was reached between 1 and 2 wk, whereas the minimum levels of 18:2n-6 and 22:5n-6 occurred within 72 h. The n-6/n-3 PUFA ratio in lung and kidney and PL classes Increased in mice fed HCO and decreased in mice fed dietary MO. When dietary MO was removed, the n-3 PUFA levels decreased with a concomitant increase in n-6 PUFA after 10 d of HCO consumption. These data are useful in defining the rates and extent of change of organ fatty acid composition in response to fish oil consumption and suggest that a continual ingestion is necessary to maintain the modifications in organ fatty acid composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call