Abstract

With the advent of high throughput technology, a huge amount of microRNA information has been added to the growing body of knowledge for non-coding RNAs. Here we present the Dietary MicroRNA Databases (DMD), the first repository for archiving and analyzing the published and novel microRNAs discovered in dietary resources. Currently there are fifteen types of dietary species, such as apple, grape, cow milk, and cow fat, included in the database originating from 9 plant and 5 animal species. Annotation for each entry, a mature microRNA indexed as DM0000*, covers information of the mature sequences, genome locations, hairpin structures of parental pre-microRNAs, cross-species sequence comparison, disease relevance, and the experimentally validated gene targets. Furthermore, a few functional analyses including target prediction, pathway enrichment and gene network construction have been integrated into the system, which enable users to generate functional insights through viewing the functional pathways and building protein-protein interaction networks associated with each microRNA. Another unique feature of DMD is that it provides a feature generator where a total of 411 descriptive attributes can be calculated for any given microRNAs based on their sequences and structures. DMD would be particularly useful for research groups studying microRNA regulation from a nutrition point of view. The database can be accessed at http://sbbi.unl.edu/dmd/.

Highlights

  • Empowered by revolutionary sequencing technology, microRNAs have been extensively discovered in various dietary resources including plants and animals

  • Many external databases are integrated within Dietary MicroRNA Database (DMD) to allow for quick viewing and annotation of microRNAs

  • As molecular properties of microRNA sequences and structures are key for target identification, we have developed a feature page to allow users to calculate for any given microRNA sequences a list of features categorized into two classes: sequence-based features and secondary structure features

Read more

Summary

Introduction

Empowered by revolutionary sequencing technology, microRNAs have been extensively discovered in various dietary resources including plants (e.g. rice and tomato) and animals (e.g. milk and meats). Given the broad implications of microRNA in health and disease [1,2,3,4,5,6,7,8], research enthusiasm for functional impacts of exogenous food microRNA in human cellular phenotypes has soared, which warrants the efforts to build related bioinformatics tools and databases. A Database Specific for Dietary MicroRNAs design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call