Abstract

Magnesium (Mg2+) is an essential mineral for maintaining biological functions. One major action of Mg2+ in the brain is modulating the voltage-dependent blockade of N-methyl-d-aspartate type glutamate receptors, thereby controlling their opening, which is crucial for synaptic plasticity. Therefore, Mg2+ has been shown to play critical roles in learning and memory, and synaptic plasticity. However, the effects of dietary Mg2+ deficiency (MgD) on learning and memory and the morphology of neurons contributing to memory performance have not been examined in depth. Here, we show that MgD impairs hippocampus-dependent memories in mice. Mice fed an MgD diet showed deficits in hippocampus-dependent contextual fear, spatial and social recognition memories, although they showed normal amygdala- and insular cortex-dependent conditioned taste aversion memory, locomotor activity, and emotional behaviors such as anxiety-related and social behaviors. However, MgD mice showed normal spine density and morphology of hippocampal neurons. These findings suggest that MgD impairs hippocampus-dependent memory without affecting the morphology of hippocampal neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.