Abstract

Background: The interaction between the effects of exogenous neurotransmitters and dietary composition on appetite regulation in nonmammalian species is unclear.Objective: The objective of this study was to determine the effects of exogenous prolactin-releasing peptide (PrRP) and dietary macronutrient composition on food intake regulation in broiler chicks.Methods: Three isocaloric diets were formulated: high-carbohydrate (HC), high-fat (HF; 60% of ME from lard) and high-protein (HP) diets. In Expt. 1, 4-d-old Hubbard × Cobb-500 chicks fed 1 of the 3 diets since hatch were intracerebroventricularly injected with 0 (vehicle), 3, or 188 pmol PrRP (n = 10). Food intake was measured for 180 min. In Expt. 2, hypothalamic mRNA abundance of appetite-associated factors was measured in hypothalamus samples obtained 1 h postinjection of 0 or 188 pmol PrRP. In Expt. 3, chicks were given free access to all diets before and after intracerebroventricular injection and food intake was measured.Results: Three and 188 pmol PrRP increased (P = 0.0008 and 0.04) HP diet intake, but only 188 pmol PrRP was efficacious at increasing HC (P = 0.0011) and HF (P = 0.01) consumption compared with the vehicle. There was a diet effect on mRNA abundance of all genes (P < 0.05), with greater expression in chicks fed the HF or HP than the HC diet. Whereas neuropeptide Y (NPY) mRNA was similar between vehicle- and PrRP-injected chicks that consumed HP or HF diets, expression was greater (P < 0.05) in PrRP- than vehicle-injected chicks that consumed the HC diet. When chicks had access to all diets, 188 pmol PrRP caused preferential (P < 0.0001) intake of the HP over the HC and HF diets.Conclusion: The HP diet enhanced the sensitivity of chicks to the food intake–stimulating effects of PrRP, and PrRP in turn increased preference for the HP diet. Thus, dietary macronutrient composition influences PrRP-mediated food intake, and PrRP in turn affects nutrient intake and transcriptional regulation in chicks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.