Abstract

The activities of lipogenic enzymes appear to fluctuate with changes in the level and type of dietary fats. Polyunsaturated fatty acids (PUFAs) are known to induce on hepatic de novo lipogenesis (DNL) the highest inhibitory effect, which occurs through a long-term adaptation. Data on the acute effects of dietary fatty acids on DNL are lacking. In this study with rats, the acute 1-day effect of high-fat (15% w/w) diets (HFDs) enriched in saturated fatty acids (SFAs) or unsaturated fatty acids (UFAs), i.e., monounsaturated (MUFA) and PUFA, of the ω-6 and ω-3 series on DNL and plasma lipid level was investigated; a comparison with a longer time feeding (21days) was routinely carried out. After 1-day HFD administration UFA, when compared to SFA, reduced plasma triacylglycerol (TAG) level and the activities of the lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), a decreased activity of the citrate carrier (CIC), a mitochondrial protein linked to lipogenesis, was also detected. In this respect, ω-3 PUFA was the most effective. On the other hand, PUFA maintained the effects at longer times, and the acute inhibition induced by MUFA feeding on DNL enzyme and CIC activities was almost nullified at 21days. Mitochondrial fatty acid composition was slightly but significantly changed both at short- and long-term treatment, whereas the early changes in mitochondrial phospholipid composition vanished in long-term experiments. Our results suggest that in the early phase of administration, UFA coordinately reduced both the activities of de novo lipogenic enzymes and of CIC. ω-3 PUFA showed the greatest effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.