Abstract

Determining the major human exposure pathways is a prerequisite for the development of effective management strategies for environmental pollutants such as chlorinated paraffins (CPs). As a first step, the internal and external exposure to CPs were quantified for a well-defined human cohort. CPs in participants' plasma and diet samples were analyzed in the present study, and previous results on paired air, dust, and hand wipe samples were used for the total exposure assessment. Both one compartment pharmacokinetic modeling and forensic fingerprinting indicate that dietary intake contributed the most to body burden of CPs in this cohort, contributing a median of 60-88% of the total daily intakes. The contribution from dust ingestion and dermal exposure was greater for the intake of long-chain CPs (LCCPs) than short-chain CPs (SCCPs), while the contribution from inhalation was greater for the intake of SCCPs than medium-chain CPs (MCCPs) and LCCPs. Significantly higher concentrations of SCCPs and MCCPs were observed in diets containing butter and eggs, respectively (p < 0.05). Additionally, other exposure sources were correlated to plasma levels of CPs, including residence construction parameters such as the construction year (p < 0.05). This human exposure to CPs is not a local case. From a global perspective, there are major knowledge gaps in biomonitoring and exposure data for CPs from regions other than China and European countries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call