Abstract

This study was conducted to test the hypothesis that supplementing 1% and 2% glycine to soybean meal (SBM)-based diets can improve the growth performance of juvenile hybrid striped bass (HSB). The basal diets contained 15% fishmeal and 58% SBM (DM basis). Alanine was used as the isonitrogenous control in different diets. All diets contained 44% CP and 10% lipids (DM basis). There were 4 tanks (15 fish per tank) per dietary group, with the mean of the initial body weight (BW) of fish being 5.3g. Fish were fed to apparent satiation twice daily, and their BW was recorded every 2wk. The trial lasted for 8wk. Results indicated that the BW, weight gain, protein efficiency ratio (PER), and retention of dietary lipids in fish were enhanced (P < 0.05) by dietary supplementation with 1% or 2% glycine. In addition, dietary supplementation with glycine did not affect (P > 0.05) the feed intake of fish but increased (P < 0.05) the retention of dietary nitrogen, most amino acids, and phosphorus in the body, compared to the 0% glycine group. Dietary supplementation with 1% and 2% glycine dose-dependently augmented (P < 0.05) the villus height of the intestine and reduced the submucosal thickness of the gut, while preventing submucosal and lamina propria hemorrhages. Compared with the 0% glycine group, dietary supplementation with 1% or 2% glycine decreased (P < 0.05) the proportion of skeletal-muscle fibers with diameters of 40-60 µm but increased (P < 0.05) the proportion of skeletal-muscle fibers with diameters of 80-100 µm and > 100 µm. Collectively, these findings indicate that glycine in SBM-based diets is inadequate for maximum growth of juvenile HSB and that dietary supplementation with 1% or 2% glycine is required to improve their weight gain and feed efficiency. Glycine is a conditionally essential amino acid for this fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.