Abstract

A high-fat, but low-fiber, diet is associated with obesity and cognitive dysfunction, while dietary fiber supplementation can improve cognition. This study examines whether dietary fibers, galacto-oligosaccharides (GOS) and resistant starch (RS), could prevent high-fat (HF)-diet-induced alterations in neurotransmitter receptor densities in brain regions associated with cognition and appetite. Rats are fed a HF diet, HF diet with GOS, HF diet with RS, or a low-fat (LF, control) diet for 4 weeks. Cannabinoid CB1 (CB1R) and 5HT1A (5HT1A R) and 5-HT2A (5HT2A R) receptor binding densities are examined. In the hippocampus and hypothalamus, a HF diet significantly increases CB1R binding, while HF+GOS and HF+RS diets prevented this increase. HF diet also increases hippocampal and hypothalamic 5-HT1A R binding, while HF+GOS and HF+RS prevented the alterations. Increased 5-HT2A binding is prevented by HF+GOS and HF+RS in the medial mammillary nucleus. These results demonstrate that increased CB1R, 5-HT1A R and 5-HT2A R induced by a HF diet can be prevented by GOS and RS supplementation in brain regions involved in cognition and appetite. Therefore, increased fiber intake may have beneficial effects on improving learning and memory, as well as reducing excessive appetite, during the chronic consumption of a HF (standard Western) diet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.