Abstract

An 8-week feeding trial was carried out under controlled condition to evaluate the effect of dietary fructooligosaccharide (FOS) on growth performance, whole body composition, antioxidant status and immunity of crabs fed high levels of plant protein diets. Thus, six experimental diets were formulated (designated as F0P50, F0P60, F0P70, F0.2P50, F0.2P60 and F0.2P70), which contain two FOS levels (0 or 0.2%) and three plant protein levels (50, 60, or 70%) according to a 2 × 3 factorial design. The results showed that weight gain increased significantly as dietary plant protein level decreased from 70% to 50%. At 50% plant protein level, the addition of 0.2% FOS can significantly elevate weight gain (WG) (P < 0.05). The highest value in survival rate was observed in crabs fed F0.2P50 and F0.2P60 diet. Crabs fed F0.2P50 diet showed significantly higher crude protein content (P < 0.05) compared with those in other groups, but there were no significant differences in the contents of moisture, crude lipid and ash among all groups (P > 0.05). Catalase (CAT) activity in crabs fed F0.2P50 increased significantly (P < 0.05) compared with crabs fed F0P60, F0P70, F0.2P60 and F0.2P70, but malondialdehyde (MDA) concentrations decreased significantly (P < 0.05). Meanwhile, nitric oxide (NO) concentration, acid phosphatase (ACP) and alkaline phosphatase (AKP) activities of crabs fed 0.2% FOS diets increased significantly (P < 0.05) compared with crabs fed 0% FOS diets. The expressions of prophenoloxidase (propo) was significantly (P < 0.05) affected only by dietary plant protein levels with the highest values observed in 50% plant protein diet, whereas the opposite was true for Myeloid differentiation factor 88 (myd88). The mRNA expressions of mitochondrial manganese superoxide dismutase (mtmnsod), lipopolysaccharide-induced TNF-α factor (litaf) and toll like receptors (tlrs) were significantly affected (P < 0.05) by both FOS and plant protein levels. The cytosolic manganese superoxide dismutase (cytmnsod) mRNA expressions in F0.2P50 and F0.2P60 groups were significantly higher than those in F0P70 and F0.2P70 groups. The results in this study indicated that supplementation with 0.2% FOS can enhance growth performance in crabs fed lower plant protein diets and as well improve immunity in those fed with higher plant protein diets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call