Abstract
Group 2 innate lymphoid cells (ILC2) strongly modulate COPD pathogenesis. However, the significance of microbiota in ILC2s remains unelucidated. Herein, we investigated the immunomodulatory role of short-chain fatty acids (SCFAs) in regulating ILC2-associated airway inflammation and explores its associated mechanism in COPD. In particular, we assessed the SCFA-mediated regulation of survival, proliferation, and cytokine production in lung sorted ILC2s. To elucidate butyrate action in ILC2-driven inflammatory response in COPD models, we administered butyrate to BALB/c mice via drinking water. We revealed that SCFAs, especially butyrate, derived from dietary fiber fermentation by gut microbiota inhibited pulmonary ILC2 functions and suppressed both IL-13 and IL-5 synthesis by murine ILC2s. Using in vivo and in vitro experimentation, we validated that butyrate significantly ameliorated ILC2-induced inflammation. We further demonstrated that butyrate suppressed ILC2 proliferation and GATA3 expression. Additionally, butyrate potentially utilized histone deacetylase (HDAC) inhibition to enhance NFIL3 promoter acetylation, thereby augmenting its expression, which eventually inhibited cytokine production in ILC2s. Taken together, the aforementioned evidences demonstrated a previously unrecognized role of microbial-derived SCFAs on pulmonary ILC2s in COPD. Moreover, our evidences suggest that metabolomics and gut microbiota modulation may prevent lung inflammation of COPD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.