Abstract

Dietary fiber has a long history in the intervention study of hyperlipidemia. In this review, current understandings of structures, sources, and natures of various kinds of dietary fibers (DFs) were analyzed first. Available evidences for the use of different varieties of DFs in the lipid-lowering action both in vitro and in vivo were subsequently classified, including both soluble ones, such as glucans, pectins, and gums, and insoluble ones, including arabinooxylans and chitosans, in order to draw a primary conclusion of their dose and molecular weight relationship with lipid-lowering effect. Their potential mechanisms, especially the related molecular mechanism of protective action in the treatment and prevention of hyperlipidemia, were summarized at last. Five major mechanisms are believed to be responsible for the antihyperlipidemic benefits of DFs, including low levels of energy, bulking effect, viscosity, binding capacity, and fermentation thus ameliorating the symptoms of hyperlipidemia. From the molecular level, DFs could possibly affect the activities of HMG-CoA reductase, LDL receptors, CYP7A1, and MAPK signaling pathway as well as other lipid metabolism-related target genes. In summary, dietary fibers could be used as alternative supplements to exert certain lipid-lowering effects on humans. However, more clinical evidence is needed to strengthen this proposal and its fully underlying mechanism still requires more investigation.

Highlights

  • Cardiovascular disease (CVD), including atherosclerosis, stroke, and myocardial infarction, is a leading factor to cause death in modern industrialized societies, which indicates that to reduce the risk factors for CVD plays a critical role in the management of public health, including decreased concentrations of plasma total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triacylglycerols (TG)

  • It has been estimated that a reduction in LDL-C for 10 mmol/L correlated with a 22% reduction in the risk of CVD mortality and morbidity and greater than 10 mmol/L TG concentrations is associated with significantly increased risk of acute pancreatitis and CVD [1, 2]

  • Β-glucan appeared to be more effective in lowering plasma LDL-C, TC, apoA-I, and glucose levels, compared with rice bran-enriched food in a 14-week trial [45]. Another meta-analysis that included 17 randomized controlled trials with 916 subjects showed that 310.3 g/d β-glucan consumption in hypercholesterolemic population significantly lowered TC by average 0.26 mmol/L and LDL-C concentration by average 0.21 mmol/L, with no significant differences in high-density lipoprotein cholesterol (HDL-C), TG, and glucose, and no reports of adverse effects were received [24], which suggested the feasibility of β-glucan as adjuvant agents of antihyperlipidemia

Read more

Summary

Introduction

Cardiovascular disease (CVD), including atherosclerosis, stroke, and myocardial infarction, is a leading factor to cause death in modern industrialized societies, which indicates that to reduce the risk factors for CVD plays a critical role in the management of public health, including decreased concentrations of plasma total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triacylglycerols (TG). “the seventh nutrient” of the body, is particular and nonreplaceable to maintain the health and composed of two types: hydrosoluble and insoluble ones, and they are classically believed to exert their influence on lipid metabolism in different patterns: hydrosoluble fiber forms an unstirred water layer on the intestinal wall and delays the absorption of sugar and fat, while the insoluble ones increase the volume of the stool. This categorization is criticized for its inaccuracy to represent the effects of all fibers in the lipid-lowering action [10].

Lipid-Lowering Effect of Different DFs
Mechanisms of DFs to Affect Lipid Metabolism
Molecular Mechanism of the Hypolipidemic Effect of DFs
Findings
Future Perspectives
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call