Abstract

Consumption of fats and oils in the ancient world was examined as a window to human nutritional needs and compared with lipid usage in the modern world, post-1900. In earlier periods, the natural and only source of edible fats and oils came from both animals and plants. These fats and oils played a vital role in the evolution of the human body structure, supporting many biochemical functions. Artifacts from prehistoric periods and the ancient world had indicated that humans were evolutionarily adapted to consume saturated lipids. They also consumed unsaturated fats and oils extracted from animals and plants, now identified as omega-3 to omega-6 in the fatty acid ratio of 1:1, commonly derived from naturally consumed unprocessed products and food sources. These fats and oils assisted in providing the ingredients for the building up of cells and maintaining their structural integrity in tissues, including the brain and other important internal organs, as well as providing energy for many biochemical processes in the body. The double bonds distributed throughout fatty acid carbon chains are a characteristic of unsaturated vegetable oils. They are more structurally diverse in polyunsaturated fats and oils with the greater preponderance for carbon-to-carbon double bonds distributed in the carbon chains. These double bonds are susceptible to generating free radicals. This article considers potential problems that proponents of the prevailing diet-heart cholesterol paradigm of the past 60 years may have neglected. It also presents the possible consequences of abandoning the evolutionarily inherited foods containing extracted natural saturated and monounsaturated fats and oils. Furthermore, the article addresses the contribution of docosahexaenoic and eicosapentaenoic acids to immunity and the possible connection of excess consumption of omega-6 fatty acid to the marked rise in obesity and other non-communicable diseases in modern civilization.

Highlights

  • What were the mechanisms that gave early hominids the impetus to develop the existing phylogenetic stock in the current form? Out of all the diets that have reached the human population over the past six decades, one of the most interesting is the “paleo diet”

  • In the pre-agricultural era, fats would have been derived from plant or animal foods obtained from their environment. These fats were integrated as part of the consumed foods and would have remained in the non-extracted form and from today’s nutrition science perspective, would have consisted of saturated, monounsaturated and polyunsaturated fatty acids as well as the even more highly unsaturated omega-3 fatty acids Docosahexaenoic (DHA) and Eicosapentaenoic (EPA) Acids essential for neurological development

  • The fatty acid is a molecule with long carbon chain, where the carbon bonds are occupied by hydrogen atoms and the chain is capped with a carboxyl group

Read more

Summary

Introduction

What were the mechanisms that gave early hominids the impetus to develop the existing phylogenetic stock in the current form? Out of all the diets that have reached the human population over the past six decades, one of the most interesting is the “paleo diet”. In hunter and gatherer circumstances, food would have been cooked with animal fat and in “the natural juices” supplemented with foraged vegetables and fruits according to the environmental availability. Their diet gave them the essential amino acids, fatty acids, vitamins and the minerals necessary for the building up of all the body components [2]. Such nutritional components are required for the synthesis of hormones and enzymes that are involved in the generation of energy that drives the human behaviours, intellect, emotions and reproductive capacity, which have successfully propelled our species into the 21st century

Evidence for Modern Understandings
Ancient Production and Composition
Historical Observations
Current Hunter Gatherer and Primate Evidence
Adaptation
Molecular Structure and Sources of Some Historically Consumed Fatty Acids
Lauric Acid
Stearic Acid
Oleic Acid
Mass Production of New Oils
Rise of Non-Communicable Diseases
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call