Abstract

Dietary fat type can influence the regulation of carbohydrate metabolism in multiple tissue types. The influence of feeding high-fat (40% of kilocalories) diets containing either menhaden oil (MO) or coconut oil (CO) on hepatic glycogenolytic and gluconeogenic capacities was studied in isolated rat hepatocytes. Estimates of both glycogenolytic and gluconeogenic capacities were performed on hepatocytes isolated from fed and fasted animals, respectively. In MO-fed animals, both basal and hormone-stimulated rates of glucose production were significantly greater than those in CO-fed animals. However, both groups displayed a similar maximal increase in glucose production above basal for glucagon and epinephrine (2.3- and 1.9-fold, respectively). Basal rates of adenosine 3′,5′-cyclic phosphate (cAMP) production were not different between groups whereas glucagon-stimulated cAMP production was increased twofold in the MO-fed group. In both MO and CO groups, the addition of 10 nM insulin reduced glucose production in fed animals to similar absolute rates. In animals fasted for 24 hours, gluconeogenic capacity was estimated using 10 mM pyruvate, lactate, or glycerol. Glucose production from all substrates was significantly greater in CO-fed animals. In addition to increased gluconeogenic rates, maximal phosphoenolpyruvate carboxykinase (PEPCK) activity was increased in the CO-fed group. Insulin reduced glucose production in both dietary groups, but the absolute rate of glucose production was 28% greater in the CO-fed group relative to the MO-fed group. In summary, dietary fat type can markedly influence the regulation of hepatic glucose metabolism in multiple metabolic pathways. MO feeding promoted glycogenolysis and sensitivity to insulin whereas CO feeding favored gluconeogenesis and reduced insulin sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call