Abstract

Nano‑titanium dioxide (nTiO2) is a widely used nanomaterial posing potential ecological risk for marine ecosystems that might be enhanced by elevated temperatures such as expected during climate change. nTiO2 may affect benthic filter feeders like mussels through waterborne exposures and via food chain due to the adsorption on/in algae. Mussel byssus are proteinaceous fibers secreted by byssal glands of the mussels for attachment. Byssus production and mechanical properties are sensitive to environmental stressors but the combined effects of warming and nTiO2 on byssus performance of mussels are unclear hampering our understanding of the predation and dislodgement risk of mussels under the multiple stressor scenarios. We explored the effects of a short-term (14-day) single and combined exposures to warming (28 °C) and 100 μg L−1 nTiO2 (including food co-exposure) on the byssus performance of the thick shell mussel Mytilus coruscus. The mechanical strength (measured as the breaking force) of the byssal threads was impaired by warming and nTiO2 (including food co-exposure), but the number and length of the byssal threads were increased. The mRNA expression levels of mussel foot proteins (mfp-3, mfp-5) and pre-collagens (preCOL-D, preCOL-P, preCOL-NG) were up-regulated to varying degrees, with the strongest effects induced by warming. This indicates that the physiological and molecular mechanisms of byssus secretion are plastic. However, downregulation of the mRNA expression of preCOL-D and preCOL-P under the combined warming and nTiO2 exposures indicate the limits of these plasticity mechanisms and suggest that the attachment ability and survival of the mussels may be impaired if the pollution or temperature conditions further deteriorate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.