Abstract

Central vasopressin (VP) release from magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON) occurs from their somata and dendrites within the SON several hours after acute dehydration, and is an important autoregulatory mechanism influencing the systemic release of VP from MNC terminals in the posterior pituitary. To begin to explore the impact of polychlorinated biphenyls (PCBs) on brain mechanisms of body fluid regulation, both central and systemic VP release in response to acute dehydration were assessed in adult male rats fed the commercial PCB mixture Aroclor 1254 (30 mg/kg/day) for 15 days. Water intake and body weight were recorded daily, and on day 15 rats were dehydrated by intraperitoneal injection of 3.5 M saline (controls received physiological saline) and sacrificed 4-6 h later. Intranuclear VP release was measured in SON tissue punches in vitro, and systemic VP release was measured in the same rats. SON prepared from dehydrated PCB-naive rats released significantly more VP than did SON from control rats (4.9 +/- 0.8 vs. 2.7 +/- 0.4 pg/ml/microg). In contrast, while Aroclor 1254 exposure had no effect on baseline water intake, weight gain, or plasma osmolality responses to dehydration in PCB-fed rats, the SON failed to respond with increased VP release during dehydration. Consistent with previous studies showing an inhibitory effect of central VP on plasma VP output, dehydrated PCB-fed rats had an exaggerated 863% increase in plasma VP over basal levels, compared to a 241% increase in PCB-naive rats, suggesting that the MNC system is subtly disrupted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call