Abstract

Ageing is associated with a decrease in the brain content of omega-3 polyunsaturated fatty acids (PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and with decreased neuroplasticity. The glutamate receptor subunits GluR2 and NR2B play a significant role in forebrain synaptic plasticity. We investigated GluR2 and NR2B in the aged prefrontal cortex, hippocampus and striatum, and tested if treatment with a preparation containing EPA and DHA can reverse age-related changes. The study compared adult and old (3–4 and 24–26 month) rats, and the latter were fed a standard diet or a diet supplemented for 12 weeks with omega-3 PUFA at 270 mg/kg/day (ratio EPA to DHA 1.5:1). Ageing was associated with decreases in the GluR2 and NR2B subunits in all structures. These decreases were fully reversed by omega-3 PUFA supplementation. Age-related changes in the phospholipid PUFA content were also seen. Decreases in DHA were mostly corrected by supplementation. This study supports the neuroprotective effect of omega-3 fatty acids in brain ageing, and illustrates specific mechanisms underlying this effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.