Abstract
BackgroundDietary energy density (DED) does not have a simple linear relationship to fat mass in children, which suggests that some children are more susceptible than others to the effects of DED. Children with the FTO (rs9939609) variant that increases the risk of obesity may have a higher susceptibility to the effects of DED because their internal appetite control system is compromised. We tested the relationship between DED and fat mass in early adolescence and its interaction with FTO variants.Methods and FindingsWe carried out a prospective analysis on 2,275 children enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC). Diet was assessed at age 10 y using 3-day diet diaries. DED (kJ/g) was calculated excluding drinks. Children were genotyped for the FTO (rs9939609) variant. Fat mass was estimated at age 13 y using the Lunar Prodigy Dual-energy X-ray Absorptiometry scanner. There was no evidence of interaction between DED at age 10 y and the high risk A allele of the FTO gene in relation to fat mass at age 13 y (β = 0.005, p = 0.51), suggesting that the FTO gene has no effect on the relation between DED at 10 y and fat mass at 13 y. When DED at 10 y and the A allele of FTO were in the same model they were independently related to fat mass at 13 y. Each A allele of FTO was associated with 0.35±0.13 kg more fat mass at 13 y and each 1 kJ/g DED at 10 y was associated with 0.16±0.06 kg more fat mass at age 13 y, after controlling for misreporting of energy intake, gender, puberty, overweight status at 10 y, maternal education, TV watching, and physical activity.ConclusionsThis study reveals the multi-factorial origin of obesity and indicates that although FTO may put some children at greater risk of obesity, encouraging a low dietary energy density may be an effective strategy to help all children avoid excessive fat gain.
Highlights
Overweight and obesity currently affects 32% of children aged 10–11 y in England [1]
This study reveals the multi-factorial origin of obesity and indicates that FTO may put some children at greater risk of obesity, encouraging a low dietary energy density may be an effective strategy to help all children avoid excessive fat gain
It is possible that the relationship between Dietary energy density (DED) and energy intake (EI) may be a result of a correlation with high fat intake because fat is a key determinant of energy density
Summary
Overweight and obesity currently affects 32% of children aged 10–11 y in England [1]. Dietary energy density (DED) refers to the amount of energy consumed per unit weight of food. Controlled experimental studies have shown that adults tend to consume a constant weight of food, despite changes in energy density, an increase in energy density leads to higher EI, a concept referred to as passive overconsumption [3]. Dietary energy density (DED) does not have a simple linear relationship to fat mass in children, which suggests that some children are more susceptible than others to the effects of DED. Children with the FTO (rs9939609) variant that increases the risk of obesity may have a higher susceptibility to the effects of DED because their internal appetite control system is compromised. We tested the relationship between DED and fat mass in early adolescence and its interaction with FTO variants
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.