Abstract

Dietary deoxynivalenol (DON) impairs the intestinal functions and performance in broiler chickens, whereas little is known about the effect of DON on the gastrointestinal microbiota. This study evaluated the impact of graded levels of dietary DON contamination on the cecal bacterial microbiota, their predicted metabolic abilities and short-chain fatty acid (SCFA) profiles in chickens. In using a single oral lipopolysaccharide (LPS) challenge we further assessed whether an additional intestinal stressor would potentiate DON-related effects on the cecal microbiota. Eighty 1-day-old chicks were fed diets with increasing DON concentrations (0, 2.5, 5, and 10 mg DON per kg diet) for 5 weeks and were sampled after half of the chickens received an oral LPS challenge (1 mg LPS/kg bodyweight) 1 day before sampling. The bacterial composition was investigated by Illumina MiSeq sequencing of the V3–5 region of the 16S rRNA gene. DON-feeding decreased (p < 0.05) the cecal species richness (Chao1) and evenness (Shannon) compared to the non-contaminated diet. The phyla Firmicutes and Proteobacteria tended to linearly increase and decrease with increasing DON-concentrations, respectively. Within the Firmicutes, DON decreased the relative abundance of Oscillospira, Clostridiaceae genus, Clostridium, and Ruminococcaceae genus 2 (p < 0.05), whereas it increased Clostridiales genus 2 (p < 0.05). Moreover, increasing DON levels linearly decreased a high-abundance Enterobacteriaceae genus and an Escherichia/Shigella-OTU (p < 0.05). Changes in the bacterial composition and their imputed metagenomic capabilities may be explained by DON-related changes in host physiology and cecal nutrient availability. The oral LPS challenge only decreased the abundance of an unassigned Clostridiales genus 2 (p = 0.03). Increasing dietary concentrations of DON quadratically increased the cecal total SCFA and butyrate concentration (p < 0.05), whereas a DON × LPS interaction indicated that LPS mainly increased cecal total SCFA, butyrate, and acetate concentrations in chickens fed the diets that were not contaminated with DON. The present findings showed that even the lowest level of dietary DON contamination had modulatory effects on chicken's cecal bacterial microbiota composition and diversity, whereas the additional oral challenge with LPS did not potentiate DON effects on the cecal bacterial composition.

Highlights

  • The gut microbiota plays a crucial role in host health through various functions like vitamin synthesis, digestion of dietary fiber, modulation of the gut epithelial barrier, and inflammatory responses as well as protecting against colonization with pathogens (Maslowski and Mackay, 2011; Kogut and Arsenault, 2016)

  • Due to the role that the gut microbiota plays in priming of gut functions and immune development (Schokker et al, 2015), DON-induced alterations in the gut bacterial composition and microbe-host interactions may account for some of the adverse effects reported for DON (Robert et al, 2017)

  • The main objective of the present study was to investigate the effects of a chronic exposure to graded levels of dietary DON contamination on the cecal bacterial microbiota, their predicted metabolic functions and short-chain fatty acid (SCFA) profile in broiler chickens

Read more

Summary

Introduction

The gut microbiota plays a crucial role in host health through various functions like vitamin synthesis, digestion of dietary fiber, modulation of the gut epithelial barrier, and inflammatory responses as well as protecting against colonization with pathogens (Maslowski and Mackay, 2011; Kogut and Arsenault, 2016). Consumption of DON impairs the intestinal morphology, nutrient absorption, barrier function, and the innate immune response in chickens (Awad et al, 2011b; Osselaere et al, 2013), whereas the interaction between DON and the chicken gut microbiota has been hardly elucidated (Ghareeb et al, 2015). Due to the role that the gut microbiota plays in priming of gut functions and immune development (Schokker et al, 2015), DON-induced alterations in the gut bacterial composition and microbe-host interactions may account for some of the adverse effects reported for DON (Robert et al, 2017)

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call