Abstract
Given the d-lactate dehydrogenase (D-LDH) deficiency, L- but not d-lactate is assumed to be the physiological isomer in mammals. Paradoxically, many fermented foods (e.g., yogurt, sauerkraut, cheeses) often contain substantial amounts of d-lactate. In the present study, dietary d-lactate may be a previously unrecognized nutrient aiding in inflammatory resolution is hypothesized. The anti-inflammatory properties of d-lactate are evaluated in experimental colitis and endotoxemia. Oral administration of d-lactate favorably affects acute inflammation in two different mouse models. Analysis of lactate-the lactate receptor (the hydroxycarboxylic acid receptor 1 HCA1, formerly GPR81) signal axis in inflammation is performed in primary peritoneal macrophages and wild-type (WT) or GPR81 knockout (KO) mice. GPR81 KO mice are susceptible to endotoxic shock than WT mice, while d-lactate exerts its anti-inflammatory activities in a GPR81-dependent manner. Mechanistically, the activation of lactate-GPR81 axis may suppress LPS-TLR4 signaling to modulate M1 macrophage polarization. Although D-LDH deficiency in mammals impairs d-lactate clearance, it might prolong its plasma terminal half-life, and thus provide a pharmacokinetic advantage of d-lactate over l-lactate. This study highlights housekeeping function of the lactate-GPR81 axis in inflammation control, and suggests that dietary intake of d-lactate may underlie Metchnikoff's probiotic yogurt theory of life prolongation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.