Abstract

The objective was to test the hypothesis that dietary copper inhibits atherosclerosis by inducing superoxide dismutase (SOD) and potentiating nitric oxide (NO). New Zealand White rabbits were fed either a cholesterol diet (n = 8) or a cholesterol diet containing 0.02% copper acetate (n = 8) for 13 weeks. We found that the intimal area was significantly smaller in the animals supplemented with copper (P < 0.005), although integrated plasma cholesterol levels were not significantly different. This was associated with a significant increase in aortic copper content (P < 0.05), SOD activity (P < 0.05) and Cu/Zn SOD mRNA (P < 0.05) and a significant decrease in nitrotyrosine content (P < 0.05). Furthermore, there was a positive correlation between aortic copper content and SOD activity (P < 0.005, R(2) = 0.83) and a negative correlation between aortic superoxide dimutase activity and nitrotyrosine content (P < 0.005, R(2) = 0.93). In organ bath experiments, the relaxation of precontracted carotid artery rings to calcium ionophore was greater in animals supplemented with copper. No difference in response to sodium nitroprusside was observed. These data suggest that in the cholesterol-fed rabbit, copper supplements inhibit the progression of atherosclerosis by increasing SOD expression, thereby reducing the interaction of NO with superoxide, and hence potentiating NO-mediated pathways that may protect against atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.