Abstract

Dietary copper (Cu) restriction leads to cardiac hypertrophy and failure in mice, and Cu repletion (CuR) reverses the hypertrophy and prevents the transition to heart failure. The present study was undertaken to determine changes in myocardial gene expression involved in Cu deficient (CuD) cardiomyopathy and its reversal by CuR. Analysis was performed on three groups of mice: 4-week-old CuD mice that exhibited signs of cardiac failure, their age-matched copper-adequate (CuA) controls, and the CuD mice that were re-fed adequate Cu for 2 weeks. Total RNA was isolated from hearts and subjected to cDNA micro-array and real-time reverse transcription-polymerase chain reaction analysis. Dietary CuD caused a decrease in cardiac mRNA of beta-MHC, L-type Ca(2+) channel, K-dependent NCX, MMP-2, -8, and -13, NF-kappaB, and VEGF. The mRNA levels of ET-1, TGF-beta, TNF-alpha, and procollagen-I-alpha1 and III-alpha1 were increased in the CuD cardiac tissue. Copper repletion resulted in cardiac mRNA levels of most of the genes examined returning to control levels, although the K-dependent NCX and MMP-2 values did not reach those of the CuA control. In addition, CuR caused an increase in beta-MHC, L-type Ca(2+)channel, MMP-13 to levels surpassing those of CuA control, and a decrease in ET-1, and TNF-alpha mRNA levels. In summary, changes in gene expression of elements involved in contractility, Ca(2+) cycling, and inflammation and fibrosis may account for the altered cardiac function found in CuD mice. The return to normal cardiac function by CuR may be a result of the favorable regression in gene expression of these critical components in myocardial tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.