Abstract

The branched-chain α-ketoacid dehydrogenase complex, catalyst for the rate-limiting step of branched-chain amino acid catabolism, is controlled by a highly specific protein kinase (branched-chain α-ketoacid dehydrogenase kinase) that associates tightly with the complex. The activity state (proportion of the enzyme in its active, dephosphorylated state) of the complex varies dramatically in different rat tissues. The activity state of the complex in the liver is greater than that in any other tissue, and liver contains the lowest amount of kinase protein and kinase mRNA. However, protein malnutrition, a condition under which the complex is largely phosphorylated and inactive, resulted in a three- to fourfold increase in hepatic kinase activity with an accompanying increase in amounts of kinase protein and mRNA, Refeeding a 50% protein diet restored the normal activity state and the original levels of kinase protein and mRNA. The amount of kinase protein associated with the complex rather than changes in specific activity of the kinase appears responsible for observed differences in activity states of the complex in several rat tissues tested. Accordingly, the levels of kinase protein and mRNA measured are highest in tissues with greatest kinase activity (heart > kidney > liver), correlating reasonably well inversely with activity state of the branched-chain α-ketoacid dehydrogenase complex in the respective tissues. These observations suggest that the amount of kinase protein expressed in various tissues and in response to dietary protein deficiency is an important factor determining the activity state of the complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call