Abstract

Simple SummaryIn this study, the effects of dietary supplementation of Clostridium butyricum and/or Bacillus subtilis were determined on growth performance, intestinal antioxidative capacity, intestinal morphology, cytokine production, and intestinal microbial composition in Yangzhou geese. Data showed that probiotics promoted feed intake and growth, improved antioxidative capacity and intestinal morphology, increased the relative abundances of Firmicutes and Lactobacillus in intestinal content, decreased the relative abundances of Proteobacteria and Ralstonia, and altered α-diversity and the predicted functions of intestinal microflora, but did not induce the expression of genes related to intestinal inflammation and tight junction.Probiotics are a substitute for antibiotics in the sense of intestinal health maintenance. Clostridium butyricum and Bacillus subtilis, as probiotic bacteria, have been widely used in animal production. The aim of this study was to investigate the effects of the two probiotic bacteria in geese. A total of 288 1-day old, healthy Yangzhou geese were randomly assigned into 4 groups (A, B, C and D) with 6 replicates of 12 birds each. Group A, as control, was fed a basal diet, and the treatment groups (B, C and D) were fed the basal diet supplemented with 250 mg/kg Clostridium butyricum (the viable count was 3.0 × 106 CFU/g), 250 mg/kg Bacillus subtilis (the viable count was 2.0 × 107 CFU/g), or a combination of the two probiotic bacteria for 70 days, respectively. The results indicated that: compared with the control group, dietary probiotics (1) promoted the growth and feed intake of the geese, (2) increased the absolute weight of duodenum, (3) increased the antioxidative capacity (total antioxidative capacity (T-AOC), total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX)) of intestinal mucosa, (4) improved intestinal morphology (the ratio of villus height to crypt depth), (5) but did not induce inflammation and changes of tight junction in the intestine, which was indicated by no induction of pro/inflammatory cytokines (IL-1β, IL-6, IL-10, TNFAIP3) and tight junction related genes (TJP1 and OCLN). Moreover, dietary probiotics increased the relative abundances of Firmicutes phylum and Lactobacillus genus and decreased the relative abundances of Proteobacteria phylum or Ralstonia genus in the intestinal content. In addition, the alpha diversity (observed species, Chao1, and estimate the number of OTUs in the community(ACE)) was reduced and the predicted functions of intestinal microflora, including peptidases, carbon fixation and metabolic function of starch and sugar, were enhanced by dietary probiotics. In conclusion, dietary probiotics promote the growth of geese by their positive effects on intestinal structure and function, the composition and functions of gut microflora, and intestinal antioxidative capacity.

Highlights

  • The extensive use of antibiotics in animal production has led to many problems such as superbacteria and drug residues, and these problems make the producers and consumers concerned about the safety of livestock and poultry products

  • D were significantly increased (p < 0.05), while there were no significant differences in the feed to gain ratio (F/G) among the groups (p > 0.05)

  • These findings indicated that dietary probiotics improved the production performance of geese

Read more

Summary

Introduction

The extensive use of antibiotics in animal production has led to many problems such as superbacteria and drug residues, and these problems make the producers and consumers concerned about the safety of livestock and poultry products. Probiotics can prevent imbalance of gut microbiota, enhance intestinal barrier function, and regulate cytokine production [1]. Clostridium butyricum, a beneficial bacterial species widely colonized in animal intestines, can promote growth, improve immunity, and regulate intestinal microbial composition in host animals [3]. Bacillus subtilis can serve as a non-toxic, non-residual and non-drug-resistant probiotic product. It has been demonstrated that Bacillus subtilis can maintain the balance of gut microbiota and the integrity of intestinal mucosal barrier, regulate nutrient metabolism, and strengthen animal immunity [4]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call