Abstract
Continued development, use, and disposal of quantum dots (QDs) ensure their entrance into aquatic environments where they could pose a risk to biological organisms as whole nanoparticles or as degraded metal constituents. Reproductive Fundulus heteroclitus were fed a control diet with lecithin, diets containing 1 or 10μg of lecithin-encapsulated CdSe/ZnS QD/day, or a diet containing 5.9μg CdCl2/day for 85 days. Cadmium concentrations in liver, intestine, and eggs were quantified with inductively coupled plasma mass spectrometry. In fish fed 10μg QD/day, QDs or their degradation products traversed the intestinal epithelia and accumulated in the liver. Less than 0.01% of the QD's cadmium was retained in the liver or intestinal tissues. This compares to 0.9% and 0.5% of the cadmium in the intestine and liver, respectively of fish fed a CdCl2 diet. Cadmium was also detected in the eggs from parents fed 10μg QD/day. No significant changes in hepatic total glutathione, lipid peroxidation, or expression of genes involved in metal metabolism or oxidative stress were observed. While QDs in the diet are minimally bioavailable, unusual levels of vitellogenin transcription in male fish as well as declining fecundity require further investigation to determine if endocrine disruption is of environmental concern.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.