Abstract
Understanding the effects of dietary carbohydrates on transcription factors that regulate myogenesis provides insight into the role of nutrient sensing by satellite cells towards myocyte differentiation. We evaluated the influence of dietary carbohydrate level (0, 15, 25 or 35%) on the temporal mRNA expression patterns (4, 8 or 12 weeks) of transcription factors that regulate satellite cell myocyte addition (MA) in rainbow trout (Oncorhynchus mykiss), a vertebrate with indeterminate growth. Relative to the 0% carbohydrate (NC) diet, 15 (IC-15) and 25% (IC-25) carbohydrate containing diets significantly up-regulate MyoD and Myf5, but not Pax7, after 12 weeks of feeding. Simultaneously, the Pax7/MyoD mRNA expression ratio declined significantly with both the IC diets. Myogenin mRNA expression also increased in rainbow trout (RBT) fed the IC-15 diet. The high carbohydrate (HC) diet (35%) attenuated the increased mRNA expression of these transcription factors. It is of note that the 4 and 8 week samples lacked the promyogenic expression patterns. The myogenic gene expression in fish fed the IC-15 diet for 12 weeks indicate a transcriptional signature that reflects increased satellite cell myogenesis. Our results suggest a potential role for satellite cells in the nutrient sensing ability of a vertebrate with indeterminate skeletal muscle growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.