Abstract

Diabetic sensory neuropathy leads to impairment of peripheral sensory nerves and downregulation of calcitonin gene-related peptide (CGRP) in a functionally specific subset of peripheral sensory neurons mediating pain. Whether CGRP plays a neuroprotective role in peripheral sensory nerve is unclear. We evaluated alterations in noxious thermal sensation and downregulation of CGRP in the 8 weeks after induction of diabetes in rats. We supplemented capsaicin in the diet of the animals to upregulate CGRP and reversed the downregulation of the neuropeptide in the dorsal root ganglion (DRG) neurons dissociated from the diabetic animals, via gene transfection and exogenous CGRP, to test disease-preventing and disease-limiting effects of CGRP. Significant preservation of the nociceptive sensation, CGRP in spinal cord and DRG neurons, and number of CGRP-expressing neurons was found in the diabetic animals given capsaicin. Improvement in the survival of the neurons and the outgrowth of neurites was achieved in the neurons transfected by LV-CGRP or by exogenous CGRP, paralleling the correction of abnormalities of intracellular reactive oxygen species and mitochondrial transmembrane potentials. The results suggest that downregulation of CGRP impairs viability, regeneration and function of peripheral sensory neurons while capsaicin normalizes the CGRP peptidergic DRG neurons and function of the sensory nerves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.