Abstract

Enhanced production of free radicals and oxidative stress induced by hyperglycemia play a central role in the pathogenesis of diabetes and its complications. This study assessed the attenuation by dietary caloric restriction on the oxidative and lipid peroxidative effects of diabetes in the liver through reduction in body and organ weights and concomitant metabolic changes. Three-month-old male Wistar rats were subjected to ad libitum feeding and 30% caloric restriction for 9 weeks before induction of diabetes by intraperitoneal injection of 35 mg/kg body weight streptozotocin. The animals were sacrificed 2 weeks after streptozotocin treatment depicting the onset of diabetes. Caloric restriction significantly reduced the organ weights (p<0.01), malondialdehyde (p<0.01) and catalase activity (p<0.01), but significantly increased glutathione reductase activity (p<0.01), and GSH/GSSG ratios (p<0.05). Caloric restriction also non-significantly reduced reactive oxygen species, superoxide dismutase and oxidized glutathione but increased glutathione peroxidase activity and reduced glutathione levels in the diabetic rats. Our data indicate a decrease in lipid peroxidation, improvement in the antioxidant defense systems and restoration of the redox status in the liver by caloric restriction. Therefore, this could provide a non-invasive antioxidant therapy early in diabetes to prevent the development of the complications associated with the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call