Abstract

The renal (Malpighian) tubules of insects play important roles in hemolymph Ca2+ regulation. Here we investigated how dietary Ca2+ loads from sucrose or blood meals affect the Ca2+ content and mRNA expression of Ca2+ transporters in Malpighian tubules of adult female mosquitoes. Using the yellow fever mosquito Aedes aegypti we found that feeding females 10% sucrose with elevated Ca2+ concentration ad libitum for 6 days led to increased Ca2+ content in Malpighian tubules. The increases of Ca2+ content correlated with up-regulations of mRNAs encoding intracellular Ca2+-ATPases (SERCA and SPCA), a plasma membrane Ca2+-ATPase (PMCA), and a K+-dependent Na+/Ca2+ exchanger (NCKX1). We also found that when adult females were fed blood, tubule Ca2+ content changed dynamically over the next 72 h in a manner consistent with redistribution of tubule Ca2+ stores to other tissues (e.g., ovaries). The changes in tubule Ca2+ were correlated with dynamic changes in mRNA abundances of SERCA, SPCA, PMCA, and NCKX1. Our results are the first to demonstrate that Malpighian tubules of adult female mosquitoes have a remarkable capacity to handle high dietary Ca2+ loads, most likely through the combination of storing excess Ca2+ within intracellular compartments and secreting it into the tubule lumen for excretion. Our results also suggest that the Malpighian tubules play key roles in supplying Ca2+ to other tissues during the processing of blood meals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call