Abstract

Somatic growth is a balance between protein synthesis and degradation, and it is largely influenced by nutritional clues. Antioxidants levels play a key role in protein turnover by reducing the oxidative damage in the skeletal muscle, and hence promoting growth performance in the long-term. In the present study, Senegalese sole postlarvae (45 days after hatching, DAH) were fed with three experimental diets, a control (CTRL) and two supplemented with natural antioxidants: curcumin (CC) and grape seed (GS). Trial spanned for 25 days and growth performance, muscle cellularity and the expression of muscle growth related genes were assessed at the end of the experiment (70 DAH). The diets CC and GS significantly improved growth performance of fish compared to the CTRL diet. This enhanced growth was associated with larger muscle cross sectional area, with fish fed CC being significantly different from those fed the CTRL. Sole fed the CC diet had the highest number of muscle fibers, indicating that this diet promoted muscle hyperplastic growth. Although the mean fiber diameter did not differ significantly amongst treatments, the proportion of large-sized fibers (>25 μm) was also higher in fish fed the CC diet suggesting increased hypertrophic growth. Such differences in the phenotype were associated with a significant up-regulation of the myogenic differentiation 2 (myod2) and the myomaker (mymk) transcripts involved in myocyte differentiation and fusion, respectively, during larval development. The inclusion of grape seed extract (GS diet) resulted in a significant increase in the expression of myostatin1. These results demonstrate that both diets (CC and GS) can positively modulate muscle development and promote growth in sole postlarvae. This effect is more prominent in CC fed fish, where increased hyperplastic and hypertrophic growth of the muscle was associated with an upregulation of myod2 and mymk genes.

Highlights

  • Aquaculture is the fastest-growing animal industry and one of the main sources of protein for human consumption (FAO, 2020)

  • Muscle formation, known as myogenesis, is a complex and highly organized process that comprises the recruitment of stem cells to a lineage of myogenic progenitor cells (MPCs), myoblast proliferation, cell cycle withdrawal, differentiation and fusion of myoblasts, and the maturation of muscle fibers (Johnston et al, 2011; Valente et al, 2013)

  • After rearing sole for 25 days, postlarvae fed with CC and grape seed (GS) diets had a higher dry weight (DW) and Standard length (SL) than the CTRL group (P < 0.001) (Table 3)

Read more

Summary

Introduction

Aquaculture is the fastest-growing animal industry and one of the main sources of protein for human consumption (FAO, 2020). Muscle formation, known as myogenesis, is a complex and highly organized process that comprises the recruitment of stem cells to a lineage of myogenic progenitor cells (MPCs), myoblast proliferation, cell cycle withdrawal, differentiation and fusion of myoblasts, and the maturation of muscle fibers (Johnston et al, 2011; Valente et al, 2013). The primary MRFs, myod and myf, are essential for the commitment of mesodermal cells to myogenic fate (Rudnicki et al, 1993) whereas the secondary MFRs, myog and mrf, participate in the differentiation of myoblasts into multinucleated myotubes (Rescan, 2001). Other factors controlling myogenesis are the myostatin (msnt1), that prevents the progression of myogenic cells into the cell division cycle (Rescan, 2005) and the myomarker (mimk) that regulates fusion of these cells to form the multinucleated muscle fibers (Landemaine et al, 2014; Huang et al, 2019)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.