Abstract

BackgroundAmong n-3 polyunsaturated fatty acids (PUFAs), the most important is α-linolenic acid (ALA). The biological activity of ALA is not equivalent to that of the long-chain n-3 PUFAs, and it has pleiotropic effects, such as functioning as an energy substrate during long-term training when carbohydrate reserves are depleted. The purpose of this investigation was to study the link between the essential dietary and plasma ALA and aerobic performance, which is estimated via maximal fat oxidation (MFO), among skiers.MethodsTwenty-four highly trained male athletes from the Russian cross-country skiing team participated in the study. ALA intake was determined by an original program used to assess the actual amount and frequency of fat consumption. The plasma level of ALA was determined using gas-liquid chromatography. The skiers’ aerobic performance was estimated via MFO and determined by indirect calorimetry using the system “Oxycon Pro”.ResultsThe consumption of ALA in the diet in half of the skiers was below the recommended level at 0.5 ± 0.2 g/day. The deficiency of plasma ALA levels was on average 0.2 ± 0.1 Mol% for almost all participants. The consumption of ALA in the diet and its level in plasma were associated with MFO (rs = 0.507, p = 0.011; rs = 0.460, p = 0.023). Levels of ALA in plasma (p = 0.0523) and the consumption of ALA in the diet (p = 0.0039) were associated with high aerobic performance.ConclusionsALA in the diet of the athletes may be used as nutritional support to increase MFO and aerobic performance.

Highlights

  • Among n-3 polyunsaturated fatty acids (PUFAs), the most important is α-linolenic acid (ALA)

  • The study of essential components of nutrition, n-3 polyunsaturated fatty acids (PUFAs), is of great interest in sports worldwide due to their significant role in improving physical performance [13,14,15]. n-3 PUFAs are necessary for the energy supply for muscle activity and contribute to maximal oxygen uptake (VO2max) [16] and performance improvement in cyclical sports athletes [14]

  • The biological effects of n-3 PUFAs have been largely attributed to improvements in mitochondrial bioenergy [28]; a key limiting step in the oxidation of FAs in skeletal muscles is the transport of lipids through the plasma membrane [18]

Read more

Summary

Introduction

Among n-3 polyunsaturated fatty acids (PUFAs), the most important is α-linolenic acid (ALA). The biological activity of ALA is not equivalent to that of the long-chain n-3 PUFAs, and it has pleiotropic effects, such as functioning as an energy substrate during long-term training when carbohydrate reserves are depleted. The purpose of this investigation was to study the link between the essential dietary and plasma ALA and aerobic performance, which is estimated via maximal fat oxidation (MFO), among skiers. The study of essential components of nutrition, n-3 polyunsaturated fatty acids (PUFAs), is of great interest in sports worldwide due to their significant role in improving physical performance [13,14,15]. The study of essential components of nutrition, n-3 polyunsaturated fatty acids (PUFAs), is of great interest in sports worldwide due to their significant role in improving physical performance [13,14,15]. n-3 PUFAs are necessary for the energy supply for muscle activity and contribute to maximal oxygen uptake (VO2max) [16] and performance improvement in cyclical sports athletes [14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.